UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA

48.0

PROGRAMA DE ESTUDIO

		I KOGKAMA DE ESTU	DIO			
	APRENDIZAJE			8°, 9°	06	
	Asignatura		Clave	Semestre	Créditos	
	a Eléctrica	Ingeniería en Comput	ación	Ingeniería en (
Div	visión	Departamento		Carrera en que	Carrera en que se imparte	
Asign	atura:	Horas:		Total (horas):		
Oblig	atoria	Teóricas 3.0		Semana 3	3.0	
Optati	iva X	Prácticas 0.0		16 Semanas 4	8.0	
Modalidad: Curso) .					
Asignatura obliga	atoria antecedente: N	inguna.				
Asignatura obliga	ntoria consecuente: N	inguna.				
sistemas inteligent		del aprendizaje y los dife de desarrollar aplicacion				
Temario						
Núm.	Nombre				ORAS	
1.	Definiciones y cara	cterísticas			3.0	
2.	Aprendizaje inducti	vo		-	7.5	
3.	Aprendizaje conexi	onista		1:	5.0	
4.	Aprendizaje bayesia	ano y adaptable		(6.0	
5.	Aprendizaje genétic	co		ģ	9.0	
6.	Aprendizaje por ana	alogías		,	7.5	
	Prácticas de labora	torio		(0.0	

Total

APRENDIZAJE (2/5)

1 Definiciones y características

Objetivo: El alumno conocerá e identificará los elementos de la definición de aprendizaje de un sistema, las características de la arquitectura del aprendizaje y la clasificación del aprendizaje.

Contenido:

- 1.1 Sistemas inteligentes y aprendizaje
- **1.2** Definiciones de aprendizaje
- 1.3 Arquitectura del aprendizaje
- 1.4 Clasificación del aprendizaje

2 Aprendizaje inductivo

Objetivo: El alumno conocerá el modelo de aprendizaje a partir de ejemplos y desarrollará aplicaciones.

Contenido:

- 2.1 Introducción
- 2.2 Aprendizaje por inducción
- 2.3 Inducción como proceso de búsqueda
- 2.4 Sistemas inteligentes basados en la inducción
- 2.5 Ventajas y desventajas de la inducción
- 2.6 Árboles de decisión

3 Aprendizaje conexionista

Objetivo: El alumno conocerá y comprenderá las características del aprendizaje con base en redes neuronales, las características de una red neuronal, los tipos de redes neuronales y desarrollará aplicaciones.

Contenido:

- 3.1 Introducción al aprendizaje conexionista
- 3.2 Redes neuronales y anatomía de una red neuronal
- 3.3 Tipos básicos de redes neuronales
- **3.4** Otros tipos de redes neuronales

4 Aprendizaje bayesiano y adaptable

Objetivo: El alumno conocerá la teoría del aprendizaje a partir de datos con incertidumbre, las comparaciones del modelo bayesiano y con otros modelos como el neuronal y desarrollará aplicaciones.

Contenido:

- 4.1 Revisión del aprendizaje bayesiano
- 4.2 Calidad del modelo de red bayesiana. Problema de aprendizaje con redes bayesianas
- **4.3** Redes probabilísticas adaptativas

Aprendizaje (3/5)

5 Aprendizaje genético

Objetivo: El alumno conocerá los fundamentos del aprendizaje genético, las características para representar la solución de un problema como un algoritmo genético, el funcionamiento de un sistema genético y desarrollará aplicaciones.

Contenido:

- **5.1** Aprendizaje en sistemas genéticos
- 5.2 Representación del conocimiento en un algoritmo genético
- **5.3** Funcionamiento de un algoritmo genético
- **5.4** Otros métodos evolutivos

6 Aprendizaje por analogías

MIT Press, Cambridge Mass, 1998

Objetivo: El alumno conocerá las características del aprendizaje por analogías con base en experiencias o casos pasados, así como los componentes de un sistema de razonamiento basado en casos, y realizará aplicaciones.

Contenido:

- 6.1 Aprendizaje por analogías
- **6.2** Representación del conocimiento en un modelo de casos
- **6.3** Funcionamiento de un sistema de razonamiento con base en casos

Bibliografía básica:	Temas para los que se recomienda
BISHOP, Christopher Neural Networks for Pattern Recognition New York, U.S.A	1, 2, 3, 4, 5 y 6
Oxford University Press, 1996	
MITCHELL, Tom Machine Learning	1, 2, 3, 4, 5 y 6
New York, U.S.A	1, 2, 3, 4, 5 , 0
McGraw Hill, 1997	
KOZA, John R. Genetic Programming: On the Programming of Computers	1, 2, 3, 4, 5 v 6
By Means of Natural Selection	1, 2, 3, 4, 3 y 0
Cambridge, Massachusetts, U.S.A MIT Press, 1992	
SUTTON, R.S.; BARTO, A.G. Reinforcement Learning: An introduction.	1, 2, 3, 4, 5 y 6
Cambridge, Massachusetts, U.S.A	

APRENDIZAJE (4/5)

Bibliografía complementaria:

BERGADANO, Francesco, GUNETTI, Daniele

Inductive Logic Programming: From Machine Learning to Software Engineering (Logic Programming) MIT Press, December 28, 1995

MEHROTRA, Kishan, MOHAN, Chilukuri, RANKA, Sanjay

Elements of Artificial Neural Networks (Complex Adaptive Systems)

MIT Press, October 11, 1996

PRÍNCIPE, José C, EULIANO, Neil R, LEFEBVRE, W. Curt

 $Neural\ and\ Adaptive\ Systems:\ Fundamentals\ through\ Simulations$

Wiley Text Books, Book and CD-ROM edition December 3, 1999

NEAPOLITAN, Richard

Learning Bayesian Networks

Prentice Hall, April 1, 2003

KORB, Kevin B, NICHOLSON, Ann E.

Bayesian Artificial Intelligence (Chapman & Hall/CRC Computer Science and Data Analysis) CRC Press, September 2003

BANZHAF, Wolfgang, NORDIN, Peter, KELLER, Robert E, FRANCONE, Frank D.

Genetic Programming: An Introduction: On the Automatic Evolution of Computer Programs and Its Applications Morgan Kaufmann, December 1, 1997

GOLDBERG, David E.

Genetic Algorithms in Search, Optimization, and Machine Learning

Addison-Wesley Pub Co, January 1, 1989

MICHALEWICZ, Zbigniew

Genetic Algorithms + Data Structures = Evolution Programs

Springer Verlag, 3rd Revision edition, March 1996

WATSON, Ian

Applying Case-Based Reasoning: Techniques for Enterprise Systems

Morgan Kaufmann, July 1, 1997

LEAKE, David B.

Case-Based Reasoning: Experiences, Lessons, and Future Directions

AAAI Press, August 13, 1996

Aprendizaje		(5/5)	GENIERO W						
Sugerencias didácticas: Exposición oral Exposición audiovisual Ejercicios dentro de clase Ejercicios fuera del aula Seminarios	X X X X X	Lecturas obligatorias Trabajos de investigación Prácticas de taller o laboratorio Prácticas de campo Otras	X X X						
Forma de evaluar: Exámenes parciales Exámenes finales Trabajos y tareas fuera del aula	X X X	Participación en clase Asistencias a prácticas Otras	X						
Perfil profesiográfico de quienes pueden impartir la asignatura									
Profesional con maestría o doctorado, In	nvestigadores dei Area.								